SOLVABILITY OF DIFFERENTIAL EQUATIONS WITH LINEAR COEFFICIENTS OF REAL TYPE

BY

RAINER FELIX

ABSTRACT. Let L be the infinitesimal generator associated with a flow on a manifold M. Regarding L as an operator on a space of testfunctions we deal with the question if L has closed range. (Questions of this kind are investigated in [4, 1, 2].) We provide conditions under which $L + \mu 1$: $\mathcal{S}(M) \to \mathcal{S}(M)$, $\mu \in \mathbb{C}$, has closed range, where $M = \mathbb{R}^n \times K$, K being a compact manifold; here $\mathcal{S}(M)$ is the Schwartz space of rapidly decreasing smooth functions. As a consequence we show that the differential operator $\sum_{i,j} a_{ij} x_j (\partial_i \partial x_i) + b$ defines a surjective mapping of the space $\mathcal{S}'(\mathbb{R}^n)$ of tempered distributions onto itself provided that all eigenvalues of the matrix (a_{ij}) are real. (In the case of imaginary eigenvalues this is not true in general [3].)

1. Preliminaries and notations. Let M be a differentiable manifold. We assume that \mathbf{R} acts on M (on the right) by diffeomorphisms; i.e. we have a one-parameter group $(\rho_t)_{t \in \mathbf{R}}$ of transformations (or a global flow) on M. Let L be the infinitesimal generator associated with this flow. We regard L as a differential operator on M given by

(1.1)
$$L\varphi(m) = \frac{d}{dt}\varphi(m \cdot t)\Big|_{t=0}, \qquad m \in M, \, \varphi \in C^{\infty}(M).$$

Or, if $\varphi_t := \varphi \circ \rho_t$, $t \in \mathbb{R}$, we have $L\varphi = (d/dt)\varphi_t|_{t=0}$. Furthermore, L is invariant under (ρ_t) , i.e.

(1.2)
$$L(\varphi_t) = (L\varphi)_t = \frac{d}{dt}\varphi_t$$

for all $t \in \mathbb{R}$. For $\mu \in \mathbb{C}$ we define the first order differential operator $L_{\mu} := L - \mu 1$. We denote by $\mathcal{D}(M)$ the space of C^{∞} -functions with compact support on M. Its dual space $\mathcal{D}'(M)$ is the space of distributions on M. A distribution $T \in \mathcal{D}'(M)$ is called relatively invariant with weight μ if

$$\langle T, \varphi_t \rangle = e^{\mu t} \langle T, \varphi \rangle$$

for all $\varphi \in \mathcal{D}(M)$, $t \in \mathbf{R}$. We write $\mathcal{D}'_{\mu}(M)$ for the space of relatively invariant distributions with weight μ .

Clearly, L_{μ} defines a continuous mapping of $\mathscr{D}(M)$ into itself. The aim of this paper is to provide conditions under which this mapping has closed range. By differentiating equation (1.3) it is seen that the closure $L_{\mu}\mathscr{D}(M)$ of the range of L_{μ}

Received by the editors February 5, 1985.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 58G99, 35A05, 35D05.

Key words and phrases. Divergences, invariant distributions, differential operators with critical points.

in $\mathcal{D}(M)$ can be characterized as the orthogonal of $\mathcal{D}'_{\mu}(M)$ in $\mathcal{D}(M)$; we write

$$(1.4) \overline{L_{\mu}\mathscr{D}(M)} = \mathscr{D}'_{\mu}(M)^{\perp}.$$

Let L^{ι}_{μ} : $\mathscr{D}'(M) \to \mathscr{D}'(M)$ be the transpose of L_{μ} : $\mathscr{D}(M) \to \mathscr{D}(M)$. Given a distribution $T \in \mathscr{D}'(M)$, by (1.4) we have

(1.5)
$$T \in \mathcal{D}'_{u}(M) \quad \text{iff} \quad L'_{u}T = 0.$$

Let $C^r(M)$ be the space of r-times continuously differentiable functions on M, $r \in \mathbb{N}$. For $\varphi \in C^1(M)$ we have

(1.6)
$$\frac{d}{dt}\left(e^{-\mu t}\varphi_{t}\right) = e^{-\mu t}\left(L_{\mu}\varphi\right)_{t}.$$

Therefore, if $L_{\mu}\varphi = 0$ we have $\varphi_t = e^{\mu t}\varphi$ for all $t \in \mathbf{R}$.

Furthermore, let $L_{\mu}\varphi = f$, $\varphi \in \mathcal{D}(M)$, and suppose that, if $m \in M$ is given, $e^{-\mu t}f(m \cdot t)$ is integrable over the interval $-\infty < t < 0$ and that

$$\lim_{n\to\infty}e^{-\mu t}\varphi(m\cdot t)=0,$$

then from (1.6) we derive the solution formula

(1.7)
$$\varphi(m) = \int_{-\infty}^{0} e^{-\mu t} f(m \cdot t) dt.$$

Moreover, suppose that $e^{-\mu t}\varphi(m \cdot t)$ is integrable over the whole real line $-\infty < t < \infty$ and that $\lim_{t \to \pm \infty} e^{-\mu t}\varphi(m \cdot t) = 0$ for all $\varphi \in \mathcal{D}(M)$. Then the distribution $\lambda_{\mu,m}$: $\varphi \mapsto \int_{-\infty}^{\infty} e^{-\mu t}\varphi(m \cdot t) dt$ is relatively invariant with weight μ , i.e.

$$\lambda_{u,m} \in \mathscr{D}'_{u}(M).$$

Therefore, if $f \in \overline{L_{\mu} \mathscr{D}(M)}$ we have the equation

(1.9)
$$\int_{-\infty}^{0} e^{-\mu t} f(m \cdot t) dt = -\int_{0}^{\infty} e^{-\mu t} f(m \cdot t) dt.$$

In this paper we are mainly concerned with the case that our manifold M is a product of \mathbb{R}^n with a d-dimensional compact differentiable manifold K. In this case there is a natural notion of the space $\mathcal{S}(M)$ of Schwartz functions and its dual space $\mathcal{S}'(M)$ of tempered distributions.

Assume that there are d vector fields Z_1, \ldots, Z_d on K such that for every $\tau \in K$ the tangent vectors $Z_1(\tau), \ldots, Z_d(\tau)$ span the tangent space $T_{\tau}(K)$ to K at τ . Then $\mathscr{S}(\mathbf{R}^n \times K)$ is the space of all smooth functions φ on $\mathbf{R}^n \times K$ such that the term

$$(1.10) \qquad \qquad (1+|x|^2)^{s/2} \partial_x^{\alpha} Z_{\tau}^{\beta} \varphi(x,\tau)$$

is bounded with respect to $(x,\tau) \in \mathbb{R}^n \times K$ for any $s \in \mathbb{N}$ and for any multi-indices $\alpha = (\alpha_1, \dots, \alpha_n)$ and $\beta = (\beta_1, \dots, \beta_d)$, where α_j , $1 \le j \le n$, and β_k , $1 \le k \le d$, belong to the set \mathbb{N}_0 of nonnegative integers and $\partial_x^{\alpha} := \partial^{|\alpha|}/\partial x_1^{\alpha_1} \cdots \partial x_n^{\alpha_n}$ with $|\alpha| := \sum_{j=1}^n \alpha_j$ and $Z_{\tau}^{\beta} := Z_1^{\beta_1} \cdots Z_d^{\beta_d}$. Sometimes it is convenient to write Y_j for $\partial/\partial x_j$, $j = 1, \dots, n$, and Y_{n+k} for Z_k , $k = 1, \dots, d$; then we have $\partial_x^{\alpha} Z_{\tau}^{\beta} = Y_1^{\gamma_1} \cdots Y_{n+d}^{\gamma_{n+d}} =: Y^{\gamma}$ with $\gamma = (\alpha_1, \dots, \alpha_n, \beta_1, \dots, \beta_d)$.

A C^{∞} -function $h(x, \tau, t)$ on $\mathbb{R}^n \times K \times \mathbb{R}$ is called of type E (resp. of type P) if for any $r \in \mathbb{N}_0$ and any multi-index γ of length n + d there are η , θ , $\sigma \in \mathbb{N}$ such that

$$(1.11) \quad \left| Y_{x,\tau}^{\gamma} \left(\frac{\partial}{\partial t} \right)^{r} h(x,\tau,t) \right| \leq \theta \left(1 + \left| x \right|^{2} \right)^{\sigma/2} e^{\eta |t|}$$

$$\left(\text{resp. } \left| Y_{x,\tau}^{\gamma} \left(\frac{\partial}{\partial t} \right)^{r} h(x,\tau,t) \right| \leq \theta \left(1 + \left| x \right|^{2} \right)^{\sigma/2} (1 + t^{2})^{\eta/2} \right)$$

for all x, τ , t. (Of course, this definition does not depend on the special chosen vector fields Z_1, \ldots, Z_d .) It is obvious that sums, products and derivatives of type E functions (resp. type P functions) are of type E (resp. of type P).

Let p and q be the projection of $\mathbb{R}^n \times K$ onto \mathbb{R}^n and K, respectively, and let p_j be the jth component of p. Our one-parameter group (ρ_t) of transformations is called of type E (resp. of type P) if the functions $p_j((x,\tau) \cdot t)$ and $\psi \circ q((x,\tau) \cdot t)$ are of type E (resp. of type P) for all $j=1,\ldots,n$ and for all $\psi \in C^{\infty}(K)$. In this case we are able to estimate x by $p((x,\tau) \cdot t) =: x'$ for any τ and t. In fact, let $(x',\tau') \cdot (-t) = (x,\tau)$; because

$$\left| p((x', \tau') \cdot (-t)) \right|^{2} \le \theta (1 + |x'|^{2})^{\sigma/2} e^{\eta |t|}$$

$$\left(\text{resp. } \left| p((x', \tau') \cdot (-t)) \right|^{2} \le \theta (1 + |x'|^{2})^{\sigma/2} (1 + t^{2})^{\eta/2} \right)$$

for some η , θ , $\sigma \in \mathbb{N}$, we have

$$(1.12) \quad 1 + |x|^{2} \le (1 + \theta) \left(1 + |p((x,\tau) \cdot t)|^{2} \right)^{\sigma/2} e^{\eta|t|}$$

$$\left(\text{resp. } 1 + |x|^{2} \le (1 + \theta) \left(1 + |p((x,\tau) \cdot t)|^{2} \right)^{\sigma/2} (1 + t^{2})^{\eta/2} \right)$$

and therefore

$$(1.13) \quad 1 + |p((x,\tau) \cdot t)|^{2} \ge \delta (1 + |x|^{2})^{\epsilon/2} e^{-\xi|t|}$$

$$\left(\text{resp. } 1 + |p((x,\tau) \cdot t)|^{2} \ge \delta (1 + |x|^{2})^{\epsilon/2} (1 + t^{2})^{-\xi/2}\right)$$

for some δ , ϵ , $\zeta > 0$.

Clearly, for each $k \in \{1, ..., n+d\}$ there are C^{∞} -functions a_{ik} on $\mathbb{R}^n \times K \times \mathbb{R}$, $1 \le i \le n+d$, such that for any $\varphi \in C^{\infty}(\mathbb{R}^n \times K)$ we have

(1.14)
$$Y_{k}(\varphi_{t})(x,\tau) = \sum_{i=1}^{n+d} a_{ik}(x,\tau,t)(Y_{i}\varphi)_{t}(x,\tau)$$

for all x, τ , t. Similarly we have

(1.15)
$$\frac{d}{dt}\varphi_t(x,\tau) = \sum_{i=1}^{n+d} b_i(x,\tau,t) (Y_i\varphi)_t(x,\tau)$$

where b_i , $1 \le i \le n + d$, are C^{∞} -functions on $\mathbb{R}^n \times K \times \mathbb{R}$.

Now let (ρ_t) be of type E (resp. of type P). Then all the functions a_{ik} and b_i are of type E (resp. of type P). This is evident by inserting p_j and $\psi \circ q$ for φ in (1.14) and (1.15), respectively. Reiterating formula (1.14) we derive that, given $t \in \mathbb{R}$, the

function φ_t belongs to $\mathscr{S}(\mathbf{R}^n \times K)$ for any $\varphi \in \mathscr{S}(\mathbf{R}^n \times K)$ and that the mapping $\varphi \mapsto \varphi_t$ is a continuous mapping of $\mathscr{S}(\mathbf{R}^n \times K)$ into itself. Hereby formula (1.13) is used. Together with (1.15) we derive that the infinitesimal generator L defines a continuous mapping of $\mathscr{S}(\mathbf{R}^n \times K)$ into itself, and our previous considerations concerning $\mathscr{D}(M)$ and $\mathscr{D}'(M)$ remain valid with regard to $\mathscr{S}(M)$ and $\mathscr{S}'(M)$, $M = \mathbf{R}^n \times K$.

2. Lemmata. Let $M = \mathbb{R}^n \times K$ and let our one-parameter group (ρ_t) be of type E. In the whole section we assume that there is $\lambda \in \mathbb{R}$ such that

$$(2.1) p_1(m \cdot t) = e^{-\lambda t} p_1(m)$$

for all $t \in \mathbb{R}$, $m = (x, \tau) \in M$. Then we have

$$(2.2) L_{\mu}(p_1\varphi) = p_1 L_{\mu+\lambda}\varphi$$

for any continuously differentiable function φ on M.

The submanifold $M^1 := \{ m \in M | p_1(m) = 0 \} = \mathbb{R}^{n-1} \times K$ is invariant under (ρ_t) . Let (ρ_t^1) be the restriction of (ρ_t) to M^1 and let L^1 be the associated infinitesimal generator. If φ is a function on M, let φ^1 be its restriction to M^1 . For any continuously differentiable function φ on M we have

$$(2.3) \qquad (L\varphi)^1 = L^1 \varphi^1.$$

LEMMA 1. Suppose that $(L^1_\mu)^t \colon \mathscr{S}'(M^1) \to \mathscr{S}'(M^1)$ is surjective. If $p_1 f \in \overline{L_\mu \mathscr{S}(M)}$ for $f \in \mathscr{S}(M)$, then $f \in \overline{L_{\mu + \lambda} \mathscr{S}(M)}$.

PROOF. By (1.4), the assertion follows from the inclusion $\mathscr{S}'_{\mu+\lambda}(M) \subseteq p_1\mathscr{S}'_{\mu}(M)$, which we are going to prove.

Let $S \in \mathscr{S}'_{\mu+\lambda}(M)$. By division of distributions there is $T_1 \in \mathscr{S}'(M)$ such that $p_1T_1 = S$. By (2.2) and (1.5) we have

(2.4)
$$p_1 L'_{\mu} T_1 = L'_{\mu + \lambda} S = 0;$$

i.e. $L'_{\mu}T_1$ is the trivial extension of a distribution $W^1 \in \mathcal{S}'(M^1)$. By assumption, $W^1 = (L^1_{\mu})'R^1$ with $R^1 \in \mathcal{S}'(M^1)$. Let $R \in \mathcal{S}'(M)$ be the trivial extension of R^1 and let $T := T_1 - R$. Then we have $p_1T = S$, and $T \in \mathcal{S}'_{\mu}(M)$ since

$$\left\langle L_{\mu}^{\prime}T,\phi\right\rangle =\left\langle W^{1}-\left(L_{\mu}^{1}\right)^{\prime}R^{1},\phi^{1}\right\rangle =0\quad\text{for all }\phi\in\mathscr{S}(M).$$

For convenience, we define the set $(L_{\mu}\mathscr{S}(M))_k$, $k \in \mathbb{N}_0$, consisting of all functions $f \in \overline{L_{\mu}\mathscr{S}(M)}$ for which there are functions $\psi_k \in \mathscr{S}(M)$ and $f_k \in \overline{L_{\mu+k\lambda}\mathscr{S}(M)}$ such that $f = L_{\mu}\psi_k + p_1^k f_k$. Clearly, $(L_{\mu}\mathscr{S}(M))_{k+1} \subseteq (L_{\mu}\mathscr{S}(M))_k$ by (2.2). Put

$$\left(L_{\mu}\mathcal{S}(M)\right)_{\infty}:=\bigcap_{k\in\mathbb{N}}\left(L_{\mu}\mathcal{S}(M)\right)_{k}.$$

LEMMA 2. Suppose that $(L^1_{\mu+\kappa\lambda})^i$: $\mathscr{S}'(M^1) \to \mathscr{S}'(M^1)$ is surjective for all $\kappa=0,\ldots,k-1$. Then $\overline{L_{\mu}\mathscr{S}(M)}=(L_{\mu}\mathscr{S}(M))_k$.

PROOF. We prove the lemma by induction on k. For k=0 the assertion is trivial. Now assume $f=L_{\mu}\psi_{k}+p_{1}^{k}f_{k}$ with $\psi_{k}\in\mathcal{S}(M)$ and $f_{k}\in\overline{L_{\mu+k\lambda}\mathcal{S}(M)}$. Obviously, $f_{k}^{1}\in\overline{L_{\mu+k\lambda}^{1}\mathcal{S}(M^{1})}$. Since $L_{\mu+k\lambda}^{1}\mathcal{S}(M^{1})$ is closed by assumption, $f_{k}^{1}=L_{\mu+k\lambda}^{1}\psi^{1}$ for some $\psi^{1}\in\mathcal{S}(M^{1})$. Select $\psi\in\mathcal{S}(M)$ such that ψ^{1} is the restriction of ψ to M^{1} . Then $f_{k}-L_{\mu+k\lambda}\psi$ vanishes on M^{1} . Therefore it can be divided by p_{1} ; i.e. there is a function $f_{k+1}\in\mathcal{S}(M)$ such that $f_{k}-L_{\mu+k\lambda}\psi=p_{1}f_{k+1}$. By Lemma 1, $f_{k+1}\in\overline{L_{\mu+(k+1)\lambda}\mathcal{S}(M)}$. Put $\psi_{k+1}:=\psi_{k}+p_{1}^{k}\psi$. Using (2.2) we get the desired equation for k+1.

LEMMA 3. Let $\lambda \neq 0$. Suppose that $\overline{L_{\mu}\mathscr{S}(M)} = (L_{\mu}\mathscr{S}(M))_{\infty}$. Then $L_{\mu}\mathscr{S}(M)$ is closed in $\mathscr{S}(M)$.

PROOF. Replacing (ρ_t) and μ by (ρ_{-t}) and $-\mu$ in case of need, we may assume that $\lambda > 0$.

Let $f \in \overline{L_{\mu}\mathscr{S}(M)}$. For any $k \in \mathbb{N}$, we take $\psi_k \in \mathscr{S}(M)$ and $f_k \in \overline{L_{\mu+k\lambda}\mathscr{S}(M)}$ such that $f = L_{\mu}\psi_k + p_1^k f_k$. In the course of the proof we determine $k_0 \in \mathbb{N}$ sufficiently large for our need. First of all we assume that the real part $\nu'_k := \operatorname{Re} \nu_k$ of $\nu_k := \mu + k\lambda$ is positive for $k \ge k_0$. For $k \ge k_0$ we put

$$(2.5) \varphi_k(m) := \psi_k(m) - p_1^k(m) \int_0^\infty e^{-\nu_k t} f_k(m \cdot t) dt, m \in M.$$

It is easily seen that the distribution $\lambda_{\nu_k,m}$ (see (1.8)) is well defined for all $k \ge k_0$ and $m \in M \setminus M^1$. In fact, for t < 0 we apply (2.1) and get the estimate

(2.6)
$$|\varphi(m \cdot t)| \leq \frac{c(\varphi, r)}{|p_1(m)|^r} e^{r\lambda t}, \qquad \varphi \in \mathscr{S}(M),$$

where r is an arbitrary integer ≥ 0 and $c(\varphi, r)$ is constant with respect to m and t. Therefore, by (1.9), for $m \in M \setminus M^1$, equation (2.5) can be written in the following form:

(2.7)
$$\varphi_k(m) = \psi_k(m) + p_1^k(m) \int_{-\infty}^0 e^{-\nu_k t} f_k(m \cdot t) dt.$$

Now, by induction on $r \in \mathbb{N}$ we see: For any $r \in \mathbb{N}$ there is $k_0 \in \mathbb{N}$ such that $\varphi_k \in C^r(M)$ for $k \ge k_0$; in fact, for any multi-index γ with $|\gamma| \le r$ the derivative $Y^{\gamma}(\varphi_k - \psi_k)(m)$ is a finite sum of terms of the form

$$(2.8) cp_1^{s'}(m)\int_a^b e^{-\nu_k t}h(m,t)(Y^{\gamma'}f_k)(m\cdot t)\,dt,$$

where $c \in \mathbb{C}$, $s' \in \mathbb{N}$ depend on k, $s' \ge k - |\gamma|$, and h(m, t) is a C^{∞} -function of type E independent of k; $|\gamma'| \le |\gamma|$, a = 0, $b = \infty$. Hereby, (1.14) is used.

For $m \in M \setminus M^1$ we can apply (2.6) and, proceeding from (2.7), we can express $Y^{\gamma}(\varphi_k - \psi_k)(m)$ by a finite sum of terms of the form (2.8) with $a = -\infty$, b = 0.

Now let us prove that for any $s \in \mathbb{N}$ and for any multi-index γ there is $k_0 \in \mathbb{N}$ such that for $k \ge k_0$ the term

$$(2.9) \qquad \left(1+\left|p(m)\right|^2\right)^{s/2}\left|Y^{\gamma}\varphi_k(m)\right|$$

is bounded with respect to $m \in M$. In view of (2.8) and by continuity it is sufficient to prove the boundedness of the terms

$$(2.10) \qquad \left(1 + |p(m)|^2\right)^{s/2} |p_1^{s'}(m)| \int_a^b e^{-\nu_k't} |h(m,t)| |Y^{\gamma'}f_k(m+t)| dt$$

on the domain $\{0 \le |p_1(m)| \le 1\}$ for a = 0, $b = \infty$ and on the domain $\{|p_1(m)| \ge 1\}$ for $a = -\infty$, b = 0. For a = 0, $b = \infty$ we use (1.13); since $f_k \in \mathcal{S}(M)$ we can estimate (2.10) by

$$(2.11) \quad \left(1+|p(m)|^{2}\right)^{s/2} \int_{0}^{\infty} e^{-\nu_{k}'t} |h(m,t)| \frac{C(f_{k},N)}{\delta^{N}(1+|p(m)|^{2})^{\epsilon N/2} e^{-\xi Nt}} dt,$$

where N is a positive integer which satisfies $\varepsilon N \ge s + \sigma$ with σ from (1.11). The boundedness of (2.11) is obvious if k_0 is sufficiently large. For $a = -\infty$, b = 0 we use (2.1). Let $k \ge k_0$ be given, we choose N as above and take a positive integer $r \ge s'$; then we get an estimate of (2.10) by the term

$$(2.12) \quad \left(1 + |p(m)|^{2}\right)^{s/2} |p_{1}^{s'}(m)| \\ \cdot \int_{-\infty}^{0} e^{-\nu_{k}'t} |h(m,t)| \frac{C(f_{k},N,r)}{\delta^{N}(1 + |p(m)|^{2})^{\epsilon N/2} e^{-\xi N|t|} e^{-\lambda rt} |p_{1}(m)|^{r}} dt$$

which is obviously bounded if r is sufficiently large.

Now let k_0 be sufficiently large and let $k \ge k_0$. From (2.5) and (2.2) we get

$$(2.13) L_{\mu} \varphi_{k} = L_{\mu} \psi_{k} - p_{1}^{k} L_{\nu_{k}} g_{k},$$

where

$$g_k(m) := \int_0^\infty e^{-\nu_k t} f_k(m \cdot t) dt.$$

Applying (1.6) with $\varphi = g_k$, $\mu = \nu_k$ for t = 0 we get

$$(2.14) L_{\nu_k} g_k = -f_k$$

and therefore

$$(2.15) L_{\mu} \varphi_k = f$$

for any $k \ge k_0$.

From (1.6) we derive that $L_{\mu}\varphi = 0$ implies $\varphi = 0$ for $\varphi \in C^{1}(M)$ vanishing at infinity; in fact, for $m \in M \setminus M^{1}$ we have $\varphi(m \cdot t) = e^{\mu t}\varphi(m)$ and therefore $\varphi(m) = 0$ because $m \cdot t \to \infty$ for $t \to -\infty$ by (2.1).

Therefore, looking at (2.15), we see that φ_k does not depend on k; i.e. $\varphi_k =: \varphi$ for all $k \ge k_0$. Thus, by (2.9), $\varphi \in \mathcal{S}(M)$.

LEMMA 4. Let $\operatorname{Re} \mu \neq 0$. Suppose that (ρ_t^1) is of type P. Then $(L_{\mu}^1)^t$: $\mathscr{S}'(M^1) \to \mathscr{S}'(M^1)$ is surjective

PROOF. Replacing (ρ_t) and μ by (ρ_{-t}) and $-\mu$ in case of need, we may assume that $\text{Re }\mu < 0$.

By (1.6), L^1_{μ} : $\mathscr{S}(M^1) \to \mathscr{S}(M^1)$ is injective. To prove that L^1_{μ} is also surjective we put

(2.16)
$$\varphi^{1}(m^{1}) := \int_{-\infty}^{0} e^{-\mu t} f^{1}(m^{1} \cdot t) dt, \qquad m^{1} = (x^{1}, \tau) \in M^{1},$$

for a given $f^1 \in \mathcal{S}(M^1)$ and show that $\varphi^1 \in \mathcal{S}(M^1)$.

In fact, by equation (1.14), for any $s \in \mathbb{N}$ and for any multi-index γ the term $(1 + |x^1|^2)^{s/2} Y^{\gamma} \varphi^1(m^1)$ is a finite sum of terms of the form

$$\int_{-\infty}^{0} e^{-\mu t} h^{1}(m^{1}, t) g^{1}(m^{1} \cdot t) dt$$

where $g^1 \in \mathcal{S}(M^1)$ and $h^1(m^1, t)$ is a C^{∞} -function of type P. Using (1.13) we see that $|h^1(m^1, t)g^1(m^1 \cdot t)|$ can be estimated by $c(1 + t^2)^{r/2}$ with some $r \in \mathbb{N}$ and some constant c > 0.

LEMMA 5. Let $\lambda \neq 0$. Suppose that (ρ_t^1) is of type P and that $\rho_t(x_1, m^1) = (e^{-\lambda t}x_1, \rho_t^1(m^1))$ for $(x_1, m^1) \in M = \mathbb{R} \times M^1$. Then $L_{\mu}\mathcal{S}(M)$ is closed in $\mathcal{S}(M)$.

PROOF. If $\operatorname{Re} \mu + k\lambda \neq 0$ for all $k \in \mathbb{N}_0$, the assertion follows by Lemmas 4, 2 and 3.

Assume that $\operatorname{Re} \mu + k\lambda = 0$ for some $k \in \mathbb{N}_0$. Given $f \in \overline{L_{\mu} \mathcal{S}(M)}$, by Lemmas 4 and 2 there are $\psi_k \in \mathcal{S}(M)$ and $f_k \in \overline{L_{\mu+k\lambda} \mathcal{S}(M)}$ such that $f = L_{\mu} \psi_k + p_1^k f_k$. Therefore, by (2.2), we have only to prove that $L_{\mu+k\lambda} \mathcal{S}(M)$ is closed; i.e. it remains to prove that $L_{\mu} \mathcal{S}(M)$ is closed for $\mu \in \mathbb{C}$ with $\operatorname{Re} \mu = 0$.

Let $Re \mu = 0$. Using the assumption we derive

(2.17)
$$\frac{\partial}{\partial x_1} L_{\mu} \varphi = L_{\mu+\lambda} \frac{\partial \varphi}{\partial x_1}$$

for all $\varphi \in \mathcal{S}(M)$. From the previous considerations we know that $L_{\mu+\lambda}\mathcal{S}(M)$ is closed. It follows that $L_{\mu+\lambda}$: $\mathcal{S}(M) \to L_{\mu+\lambda}\mathcal{S}(M)$ is an isomorphism, because $L_{\mu+\lambda}$ is injective by (1.6). Therefore, since

$$\mathcal{F}_1 := \left\{ \frac{\partial \varphi}{\partial x_1} \middle| \varphi \in \mathcal{S}(M) \right\}$$

$$= \left\{ \psi \in \mathcal{S}(M) \middle| \int_{\mathbf{R}} \psi(x_1, m^1) dx_1 = 0 \text{ for all } m^1 \in M^1 \right\}$$

is closed, $L_{\mu+\lambda}\mathscr{F}_1$ is closed. Consequently, by (2.17), $(\partial/\partial x_1)L_{\mu}\mathscr{S}(M)$ is closed. Since $\partial/\partial x_1$: $\mathscr{S}(M) \to \mathscr{F}_1$ is an isomorphism, it follows that $L_{\mu}\mathscr{S}(M)$ is closed.

3. Main results. Let us briefly sum up our assumptions and notations: We deal with a manifold $M = \mathbb{R}^n \times K$, where K is a d-dimensional compact differentiable manifold with the property that there are d vector fields Z_1, \ldots, Z_d on K such that for each $\tau \in K$ the tangent space to K at τ is spanned by the tangent vectors $Z_1(\tau), \ldots, Z_d(\tau)$. For $(x, \tau) \in \mathbb{R}^n \times K$ we put $p_j(x, \tau) := x_j$ and $q(x, \tau) := \tau$. Let $(\rho_t)_{t \in \mathbb{R}}$ be a one-parameter group of transformations acting on M and let L be the associated infinitesimal transformation (see (1.1)). For $\mu \in \mathbb{C}$ we define the differential operator $L_{\mu} := L - \mu 1$.

THEOREM. Let (ρ_t) be of type E. Given $k \in \mathbb{N}$, $1 \le k \le n$, let $M^j := \{(x,\tau) \in M | x_1 = \cdots = x_j = 0\}$ be invariant under (ρ_t) for $j = 1, \ldots, k$. We assume that the restriction of (ρ_t) to M^k is of type P and that the projection of $\rho_t(x,\tau)$ onto M^k does not depend on x_1, \ldots, x_k . Suppose that there are real numbers λ_j , $1 \le j \le n$, $\lambda_j \ne 0$ for $j = 1, \ldots, k$, $\lambda_j = 0$ for $j = k + 1, \ldots, n$, such that $p_j((x,\tau) \cdot t)$ has the form

(3.1)
$$p_j((x,\tau)\cdot t) = e^{-\lambda_j t} x_j + w_j(x_1,\ldots,x_{j-1},\tau,t), \quad j=1,\ldots,n,$$

where w_i are functions independent of x_i, \ldots, x_n .

Then $L_u: \mathcal{S}(M) \to \mathcal{S}(M)$ is injective and its range is closed.

PROOF. First of all, it is easy to see that (2.1) with $\lambda = \lambda_1$ will follow from (3.1). In fact, we have

$$w_1(\tau, t) = p_1((0, \tau) \cdot t) - e^{-\lambda_1 t} 0$$

and $p_1((0,\tau)\cdot t)=0$ since M^1 is invariant under (ρ_t) by assumption. From (2.1) we conclude that the orbit $\{(x,\tau)\cdot t|t\in\mathbf{R}\}$ is unbounded whenever $x_1\neq 0$. Together with (1.6) we see that L_μ is injective for any $\mu\in\mathbf{C}$.

Now let us prove by induction on k that $L_{\mu}\mathscr{S}(M)$ is closed in $\mathscr{S}(M)$ for each $\mu \in \mathbb{C}$. For k=1 the assertion follows by Lemma 5. Let k>1. By induction hypothesis, $L^1_{\mu}\mathscr{S}(M^1)$ is closed in $\mathscr{S}(M^1)$ and L^1_{μ} : $\mathscr{S}(M^1) \to \mathscr{S}(M^1)$ is injective by the consideration above. Since $\mathscr{S}(M^1)$ is a Fréchet space it follows that the transpose $(L^1_{\mu})'$: $\mathscr{S}'(M^1) \to \mathscr{S}'(M^1)$ is surjective for all $\mu \in \mathbb{C}$. Thus, by Lemmas 2 and 3, $L_{\mu}\mathscr{S}(M)$ is closed.

Example. On $M = \mathbb{R}^n \times \mathbb{T}^d$ ($\mathbb{T}^d = d$ -dimensional torus), $n, d \in \mathbb{N}_0$, we consider the one-parameter group

$$\rho_t(x,\tau) = \left(x_1 e^{\lambda_1 t}, \dots, x_n e^{\lambda_n t}, \tau_1 e^{i\alpha_1 t}, \dots, \tau_d e^{i\alpha_d t}\right),\,$$

where $\lambda_1, \ldots, \lambda_n, \alpha_1, \ldots, \alpha_d \in \mathbf{R}$. The infinitesimal generator L associated with (ρ_t) is given by

$$L\varphi(x,\tau) = \sum_{j=1}^{n} \lambda_{j} x_{j} \frac{\partial \varphi}{\partial x_{j}}(x,\tau) + \sum_{k=1}^{d} \alpha_{k} \frac{\partial \varphi}{\partial \tau_{k}}(x,\tau).$$

By the Theorem, $L_{\mu}\mathscr{S}(M)$ is closed in $\mathscr{S}(M)$ for any $\mu \in \mathbb{C}$ provided that n > 0 and $\lambda_j \neq 0$ at least for one j. (Compare [4, Example 2].) In general, $L\mathscr{S}(M)$ is not closed for n = 0 [4, Example 1]. Particularly, the range of the restriction of L to \mathbf{T}^d may be not closed in spite of the fact that L itself has closed range.

Furthermore, putting d=0 and assuming $\lambda_j \neq 0$ for one j we can conclude that $L \colon \mathscr{S}'(\mathbf{R}^n) \to \mathscr{S}'(\mathbf{R}^n)$ is surjective. This should be compared with Miwa's result [5] affirming that $L \colon \mathscr{B}(\mathbf{R}^n) \to \mathscr{B}(\mathbf{R}^n)$ is surjective if additionally it is supposed that $|\lambda_j| \leq 1$ for all $j=1,\ldots,n$, where $\mathscr{B}(\mathbf{R}^n)$ is the set of hyperfunctions on \mathbf{R}^n .

COROLLARY. Given a first-order differential operator $\neq 0$ on \mathbb{R}^n with linear coefficients

$$D = \sum_{i,j=1}^{n} a_{ij} x_j \frac{\partial}{\partial x_i} + b, \qquad a_{ij}, b \in \mathbf{R}.$$

Suppose that all eigenvalues of the matrix (a_{ij}) are real.

Then D: $\mathcal{S}'(\mathbf{R}^n) \to \mathcal{S}'(\mathbf{R}^n)$ is surjective.

PROOF. After change of basis we may assume that the matrix $A = (a_{ij})$ has Jordan form

with Jordan boxes

$$J_{\rho} = \begin{pmatrix} \lambda_{\rho} & & & \\ 1 & \ddots & & \\ & \ddots & & \\ & & 1 & \lambda_{\rho} \end{pmatrix}, \qquad \lambda_{\rho} \in \mathbf{R}, \, 1 \leqslant \rho \leqslant r,$$

which are arranged in such a manner that $\lambda_{\rho} \neq 0$ for $\rho = 1, ..., k$ and $\lambda_{\rho} = 0$ for $\rho = k + 1, ..., r$, where $0 \leq k \leq r$. It is easily seen that $D = L_{\mu}^{t}$, where L is the infinitesimal generator associated with the one-parameter group $\rho_{t}(x) = e^{-tA}x$ and $\mu = \operatorname{trace}(A) - b$. Therefore it is sufficient to show that L_{μ} : $\mathcal{S}(\mathbf{R}^{n}) \to \mathcal{S}(\mathbf{R}^{n})$ is injective and has closed range.

Let k = 0. If $\mu \neq 0$, the assertion follows by Lemma 4. If $\mu = 0$, the assertion follows by [3].

Now let k > 0. Then we can apply the Theorem, where K is assumed to be trivial.

REFERENCES

- 1. R. Barrà, Fonctions divergences et distributions invariantes, Bull. Sci. Math. 105 (1981), 49-71.
- 2. _____, Fonctions divergences et distributions invariantes. II, Bull. Sci. Math. 107 (1983), 209-217.
- 3. R. Felix, Solvability of differential equations with linear coefficients of nilpotent type, Proc. Amer. Math. Soc. 94 (1985), 161-166.
 - 4. C. S. Herz, Functions which are divergences, Amer. J. Math. 92 (1970), 641-656.
- 5. T. Miwa, On the existence of hyperfunctions solutions of linear differential equations of the first order with degenerate real principal symbols, Proc. Japan Acad. 49 (1973), 88-93.

FAKULTÄT FÜR MATHEMATIK, UNIVERSITÄT BIELEFELD, D-4800 BIELEFELD, FEDERAL REPUBLIC OF GERMANY